Mystery underlying heart toxicity caused by diabetes drugs solved

For new diabetes medications, in which one drug aims to address the excess of lipids and glucose in the blood, the therapeutic benefits, while great, frequently are accompanied by dangerous toxic effects to the heart. Why and how these drugs cause heart dysfunction in diabetes patients has been unclear. Now, scientists show that certain diabetes drugs have a profound toxic effect on the generation and function of mitochondria.

Read more

Cellular senescence is associated with age-related blood clots

Cells that become senescent irrevocably stop dividing under stress, spewing out a mix of inflammatory proteins that lead to chronic inflammation as more and more of the cells accumulate over time. Researchers have identified 44 specific senescence-associated proteins that are involved in blood clotting, marking the first time that cellular senescence has been associated with age-related blood clots.

Read more

Thinner shells for delivering gentler therapeutic bursts

Releasing drugs that are packaged into microcapsules requires a significant amount of force, and the resulting burst can cause damage to human tissues or cause blood clots. A new technique creates lopsided microcapsule 'shells' that can burst and release their cargo at much lower pressure, making them safer for use in the body.

Read more

Better samples, better science: New study explores integrity of research specimens

Biological samples can be highly susceptible to changes over time, which often occur when they are removed from deep refrigeration. Degraded samples can produce spurious results in research. To address these concerns, scientists have designed a highly sensitive test that can be used to establish the integrity of blood plasma and serum, the most common biosamples used in medical research.

Read more

New mechanism for dysfunctional insulin release identified

Researchers have identified a previously unknown mechanism that regulates release of insulin, a hormone that lowers blood glucose levels, from the beta cells of the pancreas. This mechanism is disrupted in type 2 diabetes. The scientists hope this finding will be used to develop new treatments against the disease.

Read more