Bed time is the best time to take blood pressure medication

People with high blood pressure who take all their anti-hypertensive medication in one go at bedtime have better controlled blood pressure and a significantly lower risk of death or illness caused by heart or blood vessel problems, compared to those who take their medication in the morning, according to new research.

Read more

Protein in blood protects against neuronal damage after brain hemorrhage

Patients who survive a cerebral hemorrhage may suffer delayed severe brain damage caused by free hemoglobin, which comes from red blood cells and damages neurons. Researchers have now discovered a protective protein in the body called haptoglobin, which prevents this effect.

Read more

When added to gene therapy, plant-based compound may enable faster, more effective treatments

Today's standard process for administering gene therapy is expensive and time-consuming — a result of the many steps required to deliver the healthy genes into the patients' blood stem cells to correct a genetic problem. Scientists believe they have found a way to sidestep some of the current difficulties, resulting in a more efficient gene delivery method that would save money and improve treatment outcomes.

Read more

Ibrutinib linked to high blood pressure and other heart problems, study suggests

Over half of people prescribed the targeted blood cancer-fighting drug ibrutinib developed new or worsened high blood pressure within six months of starting the medication. The analysis is also the first to tie ibrutinib-related hypertension to a heightened risk of heart problems, particularly atrial fibrillation. Moreover, the association of ibrutinib with cardiovascular complications remained regardless of the prescribed dose.

Read more

For the first time, professor observes crystallized iron product, hemozoin, made in mammals

For the first time ever, a professor has observed a crystallized iron product called hemozoin being made in mammals, with widespread implications for future research and treatment of blood disorders. Findings could be used to treat sickle cell disease and malaria patients, while opening up diverse research avenues across immunology, parasitology, neuroscience, microbiology, and even urology.

Read more

Simulations characterize turbulence caused by common connection for dialysis

The complex interplay among the arteriovenous grafts, the vessels they connect, and the blood they transport has been difficult to simulate, but one new method provides a way. Researchers report simulations that reconstructed the fluid dynamics affected by the insertion of an AVG. They used a model that considered the ability of AVG tubes and blood vessels to deform and found much of the disrupted flow could be mitigated by this flexibility.

Read more