Drug-light combo could offer control over CAR T-cell therapy

Bioengineers are a step closer to making CAR T-cell therapy safer, more precise and easy to control. They developed a system that allows them to select where and when CAR T cells get turned on so that they destroy cancer cells without harming normal cells. The system requires two 'keys' — the drug Tamoxifen and blue light — to activate CAR T cells to bind to their targets.

Read more

Inactive receptor renders cancer immunotherapies ineffective

The aim of immunotherapies is to enable the immune system once again to fight cancer on its own. Drugs known as checkpoint inhibitors are already in clinical use for this purpose. However, they are only effective in about one third of patients. Based on analysis of human tissue samples, a team has now discovered one reason why this is so: an inactive receptor in cancer cells prevents the drugs from reactivating the immune system.

Read more

Algorithm personalizes which cancer mutations are best targets for immunotherapy

As tumor cells multiply, they often spawn tens of thousands of genetic mutations. Figuring out which ones are the most promising to target with immunotherapy is like finding a few needles in a haystack. Now a new model hand-picks those needles so they can be leveraged in more effective, customized cancer vaccines.

Read more