Folding a drop of water solves a longstanding challenge in portable diagnostic devices

If you've ever stopped to watch rain falling on a windowpane, you've seen what happens when two drops of water touch and merge into one. But you probably never imagined that the physics at work in this phenomenon was the key to unlocking a solution for the development of miniaturized personal biological analysis devices.

Read more

Single-particle spectroscopy of CsPbBr3 perovskite reveals the origin low electrolumine

Researchers have used the method of single-particle spectroscopy to study electroluminescence in light-emitting devices. They discovered that efficient charge funneling between individual perovskite nanocrystals and the phenomenon of emission blinking are responsible for the low efficiencies of perovskite light-emitting devices.

Read more

A new strategy for the synthesis of complex natural products

Chemists have succeeded in synthesizing two complex natural products from the group of dithiodiketopiperazines (DTPs). For this, they employed a new strategy based on ''C-H bond activation,'' resulting in a short and high yielding route. The researchers describe their new concept for the total synthesis of Epicoccin G and Rostratin A.

Read more

Stabilizing multilayer flows may improve transportation of heavy oils

During the past 20 years, the oil industry has begun to transition away from light oils toward heavier oils. But transporting heavy oils cost-effectively is a challenge because heavy oils are viscous — essentially a thick, sticky and semifluid mess. One way to outmaneuver this problem is a viscoplastic lubrication technique. It can complement existing methods to stabilize interfaces within multilayer flows.

Read more

A close up on the real world: Atomic migration under ambient conditions

Researchers have reported an environmental transmission electron microscopy technique that has allowed in situ visualization of the atomic changes of a metal surface in an electric field under ambient conditions. The activation of oxygen gas molecules by electron tunneling was found to result in atomic migration that could be followed progressively. It is hoped that the tunneling-electron-attached-gas process will provide valuable insight for the development of nanoparticle catalyst and quantum material applications.

Read more

Forward or backward? New pathways for protons in water or methanol

A collaborative ultrafast spectroscopy and ab initio molecular dynamics simulations study shows that proton vacancies in the form of hydroxide/methoxide ions are as relevant for proton transfer between acids and bases as hydrated excess protons, thus pointing for a clear demand for refinement of the microscopic picture for aqueous proton transport – in solution as well as in hydrogen fuel cells or transmembrane proteins – away from currently often assumed dominant role of hydrated excess protons.

Read more