Catalysis that neutralizes air-polluting NOx from power plant emissions

New research describes the mechanism behind catalysis that neutralizes air-polluting NOx from power plant emissions. Researchers used a High Field (HF) Nuclear Magnetic Resonance (NMR) spectrometer in conjunction with reaction studies to test three theories around titania-supported vanadium oxide. They found that tungsten oxide changes the structure of vanadium oxide from a less active form to a highly active form.

Read more

Magnets sustainably separate mixtures of rare earth metals

A new study describes a novel approach for purifying rare earth metals, crucial components of technology that require environmentally-damaging mining procedures. By relying on the metal's magnetic fields during the crystallization process, researchers were able to efficiently and selectively separate mixtures of rare earth metals.

Read more

Mix master: Modeling magnetic reconnection in partially ionized plasma

Many of the most dramatic events in the solar system — the spectacle of the Northern Lights, the explosiveness of solar flares, and the destructive impact of geomagnetic storms that can disrupt communication and electrical grids on Earth — are driven in part by a common phenomenon: fast magnetic reconnection. In this process the magnetic field lines in plasma — the gas-like state of matter consisting of free electrons and atomic nuclei, or ions — tear, come back together and release large amounts of energy.

Read more

New insights could help tame speedy ions in fusion plasmas

To create a practical fusion energy reactor, researchers need to control particles known as fast ions. These speedy ions, which are electrically charged hydrogen atoms, provide much of the self-heating ability of the reactor as they collide with other ions. But they can also quickly escape the powerful magnetic fields used to confine them and overheat the walls of the containment vessel, causing damage.

Read more

World record acceleration: Zero to 7.8 billion electron volts in 8 inches

To understand the fundamental nature of our universe, scientists would like to build particle colliders that accelerate electrons and their antimatter counterparts (positrons) to extreme energies (up to tera electron volts, or TeV). With conventional technology, however, this requires a machine that is enormously big and expensive (think 20 miles long). To shrink the size and cost of these machines, the acceleration of the particles — how much energy they gain in a given distance — must be increased.

Read more

Researchers watch quantum knots untie

A quantum gas can be tied into knots using magnetic fields. The same researchers who were the first to produce these knots have now studied how the knots behave over time. The surprising result is that the knots untie themselves over a short period of time, before turning into a vortex.

Read more