The quantum internet just went live on Verizon’s network

Penn engineers have taken quantum networking from the lab to Verizon’s live fiber network, using a silicon “Q-chip” that speaks the same Internet Protocol as the modern web. The system pairs classical and quantum signals like a train engine with sealed cargo, ensuring routing without destroying quantum states. By maintaining fidelity above 97% even under real-world noise, the approach shows that a scalable quantum internet is possible using today’s infrastructure.

Read more

Scientists brew “quantum ink” to power next-gen night vision

Toxic metals are pushing infrared detector makers into a corner, but NYU Tandon researchers have developed a cleaner solution using colloidal quantum dots. These detectors are made like “inks,” allowing scalable, low-cost production while showing impressive infrared sensitivity. Combined with transparent electrodes, the innovation tackles major barriers in imaging systems and could bring infrared technology to cars, medicine, and consumer devices.

Read more

Tiny new lenses, smaller than a hair, could transform phone and drone cameras

Scientists have developed a new multi-layered metalens design that could revolutionize portable optics in devices like phones, drones, and satellites. By stacking metamaterial layers instead of relying on a single one, the team overcame fundamental limits in focusing multiple wavelengths of light. Their algorithm-driven approach produced intricate nanostructures shaped like clovers, propellers, and squares, enabling improved performance, scalability, and polarization independence.

Read more

Scientists just made atoms talk to each other inside silicon chips

Researchers at UNSW have found a way to make atomic nuclei communicate through electrons, allowing them to achieve entanglement at scales used in today’s computer chips. This breakthrough brings scalable, silicon-based quantum computing much closer to reality.

Read more

Scientists build micromotors smaller than a human hair

Using laser light instead of traditional mechanics, researchers have built micro-gears that can spin, shift direction, and even power tiny machines. These breakthroughs could soon lead to revolutionary medical tools working at the scale of cells.

Read more

Lasers just made atoms dance, unlocking the future of electronics

Scientists at Michigan State University have discovered how to use ultrafast lasers to wiggle atoms in exotic materials, temporarily altering their electronic behavior. By combining cutting-edge microscopes with quantum simulations, they created a nanoscale switch that could revolutionize smartphones, laptops, and even future quantum computers.

Read more

Researchers design tunable, self-recovering dyes for use in next-generation smart devices

Researchers are working to better control how the chemicals respond to treatment, as well as how to reverse the chemicals back to their original state with little to no interference. A team of researchers has achieved such results with a specific compound that can emit light and has potential applications in the next generation of smart devices such as wearable devices and anti-counterfeiting paintings.

Read more

Machine-learning analysis of X-ray data picks out key catalytic properties

Scientists seeking to design new catalysts to convert carbon dioxide (CO2) to methane have used a novel artificial intelligence (AI) approach to identify key catalytic properties. By using this method to track the size, structure, and chemistry of catalytic particles under real reaction conditions, the scientists can identify which properties correspond to the best catalytic performance, and then use that information to guide the design of more efficient catalysts.

Read more