That new yarn? Wearable, washable textile devices are possible with MXene-coated yarns

Researchers have figured out how to add more conductivity into functional fabric devices, by coating yarns with a 2-dimensional carbon-based material called MXene, to make conductive threads. The group has developed a dip-coating method, similar to the dyeing process, that can produce a conductive yarn strong enough for use in industrial knitting machines and durable enough to make it through wash cycles without degrading.

Read more

Twist-based refrigeration: Twisting and coiling 'twistocaloric' yarns to keep cool

Researchers have discovered a new technology for refrigeration that is based on twisting and untwisting fibers. They demonstrated twist-based refrigeration using materials as diverse as natural rubber, ordinary fishing line and nickel titanium wire.

Read more

Intelligent, shape-morphing, self-healing material for soft robotics

Advances in the fields of soft robotics, wearable technologies, and human/machine interfaces require a new class of stretchable materials that can change shape adaptively while relying only on portable electronics for power. Researchers have developed such a material that exhibits a unique combination of high electrical and thermal conductivity with actuation capabilities that are unlike any other soft composite.

Read more

Explained: The lifetime of an evaporating liquid drop

The lifespan of a liquid droplet which is transforming into vapour can now be predicted thanks to a new theory. The new understanding can now be exploited in a myriad of natural and industrial settings where the lifetime of liquid drops governs a process' behavior and efficiency.

Read more

Nanostructures help to reduce the adhesion of bacteria

Scientists has shown how bacteria adhere to rough surfaces at the microscopic level. The team has discovered that precise analysis of the topographical composition of nanostructured surfaces provides a direct means of deriving the adhesive forces that bind bacteria to the surface. This discovery has opened up promising new avenues of research, including ways of combating the bacteria that are so hazardous in clinical environments.

Read more

Watching energy transport through biomimetic nanotubes

Scientists have investigated a simple biomimetic light-harvesting system using advanced spectroscopy combined with a microfluidic platform. The double-walled nanotubes work very efficiently at low light intensities, while they are able to get rid of excess energy at high intensities. These properties are useful in the design of novel materials for the harvesting and transport of photon energy.

Read more