Composite metal foam outperforms aluminum for use in aircraft wings

The leading edges of aircraft wings have to meet a very demanding set of characteristics. New research shows that a combination of steel composite metal foam and epoxy resin has more desirable characteristics for use as a leading-edge material than the aluminum currently in widespread use.

Read more

Novel nanoprobes show promise for optical monitoring of neural activity

Researchers have developed ultrasensitive nanoscale optical probes to monitor the bioelectric activity of neurons and other excitable cells. This novel readout technology could enable scientists to study how neural circuits function at an unprecedented scale by monitoring large numbers of individual neurons simultaneously. It could also lead to high-bandwidth brain-machine interfaces with dramatically enhanced precision and functionality.

Read more

Always on beat: Ultrashort flashes of light under optical control

Ultrashort laser pulses have enabled scientists and physicians to carry out high-precision material analyses and medical procedures. Physicists have now discovered a new method for adjusting the extremely short time intervals between laser flashes with exceptional speed and precision. The intervals can be increased or decreased as needed, all at the push of a button. Potential applications range from laser spectroscopy to microscopy and materials processing.

Read more

Creating and trapping trions at room temperature

A team chemically engineered carbon nanotubes to synthesize and trap trions at room temperature. Trions are quasi particles that can potentially carry more information than electrons in applications from bioimaging to chemical sensing and quantum computing. The research makes it possible to manipulate trions and study their fundamental properties in ways that have never been possible before.

Read more