Taking new angle to enable more efficient, compact fusion power plants

Researchers have demonstrated a new approach for injecting microwaves into a fusion plasma that doubles the efficiency of a critical technique that could have major implications for future fusion reactors. The results show that launching the microwaves into the plasma via a novel geometry delivers substantial improvements in the plasma current drive.

Read more

Taking a new tangent to control pesky waves in fusion plasmas

Fusion combines light elements in the form of plasma — the hot, charged state of matter composed of free electrons and atomic nuclei — to generate massive amounts of energy. One of the ways that scientists help heat the plasma is by injecting beams of energetic particles into tokamaks to provide enough energy for plasma particles to overcome mutual repulsion and fuse together.

Read more

Fusion: Fuel injection helps reduce magnetic island instabilities

Fusion is a non-carbon-based process for energy production, where lighter atoms fuse into heavier ones. Fusion reactors operate by confining a 'soup' of charged particles, known as a plasma, within powerful magnetic fields. But these magnetic fields must contain the plasma long enough that it can be heated to extreme temperatures — hotter than the sun — where fusion reactions can occur.

Read more

Scientists recalculate the optimum binding energy for heterogeneous catalysis

In a discovery that could lead to the development of novel catalysts that do not rely on expensive rare metals, scientists have shown that the optimal binding energy can deviate from traditional calculations, which are based on equilibrium thermodynamics, at high reaction rates. This means that reconsidering the design of catalysts using the new calculations may be necessary to achieve the best rates.

Read more

A simpler way to make some medicines

Organic chemists have figured out how to synthesize the most common molecule arrangement in medicine, a scientific discovery that could change the way a number of drugs — including one most commonly used to treat ovarian cancer — are produced. Their discovery, published today in the journal Chem, gives drug makers a crucial building block for creating medicines that, so far, are made with complex processes that result in a lot of waste.

Read more