Quality control in immune communication: Chaperones detect immature signaling molecules

The cells of our immune system constantly communicate with one another by exchanging complex protein molecules. A team has now revealed how dedicated cellular control proteins, referred to as chaperones, detect immature immune signaling proteins and prevent them from leaving the cell.

Read more

Cellular senescence is associated with age-related blood clots

Cells that become senescent irrevocably stop dividing under stress, spewing out a mix of inflammatory proteins that lead to chronic inflammation as more and more of the cells accumulate over time. Researchers have identified 44 specific senescence-associated proteins that are involved in blood clotting, marking the first time that cellular senescence has been associated with age-related blood clots.

Read more

Researchers perform thousands of mutations to understand amyotrophic lateral sclerosis

Researchers have used a technique called high-throughput mutagenesis to study Amyotrophic Lateral Sclerosis (ALS), with unexpected results. Results showed that aggregation of TDP-43 is not harmful but actually protects cells, changing our understanding of ALS and opening the door to radically new therapeutic approaches.

Read more

New mechanism for dysfunctional insulin release identified

Researchers have identified a previously unknown mechanism that regulates release of insulin, a hormone that lowers blood glucose levels, from the beta cells of the pancreas. This mechanism is disrupted in type 2 diabetes. The scientists hope this finding will be used to develop new treatments against the disease.

Read more